Python
Python Projects on Jupyter Notebook
Python Movie Recommendation Algorithm
import requests
import json
def get_movies_from_tastedive(movie_name):
tastedive = "https://tastedive.com/api/similar"
params_diction = {}
params_diction['q'] = movie_name
params_diction['type'] = 'movies'
params_diction['limit'] = 5
movie = requests.get(tastedive, params = params_diction)
print(movie.url)
return movie.json()
def extract_movie_titles(movie):
title_lst = [name["Name"]for name in movie["Similar"]["Results"]]
return title_lst
def get_related_titles(movie_lst):
title_lst = []
for movie in movie_lst:
get_movie = get_movies_from_tastedive(movie)
extracted_movies = extract_movie_titles(get_movie)
for movie_title in extracted_movies:
if movie_title not in title_lst:
title_lst.append(movie_title)
return title_lst
def get_movie_data(movie_name):
OMDB = "http://www.omdbapi.com/"
params_diction = {}
params_diction['t'] = movie_name
params_diction['r'] = 'json'
movie_data = requests_with_caching.get(OMDB, params = params_diction)
print(movie_data.url)
return movie_data.json()
def get_movie_rating(movie_data):
for rate in movie_data['Ratings']:
if rate['Source'] == 'Rotten Tomatoes':
return int(rate['Value'][:2])
return int(0)
def get_sorted_recommendations(input_movie):
recommended = []
related = get_related_titles(input_movie)
for movie in related:
recommended.append(movie)
sorted_recommendations = sorted(recommended, key = lambda x: (get_movie_rating(get_movie_data(x)), x), reverse = True)
return sorted_recommendations